

aboutcode/scancode-toolkit

Project Proposal
GSoD 2019

Reference for
Command-Line Options in
scancode-toolkit and
Reorganize the structure of
AboutCode documentation at
aboutcode.readthedocs.io
Ayan Sinha Mahapatra

Abstract
Presently, most of the AboutCode documentation is about getting up to speed with the tools and some

tutorials on how to perform a basic task. A more detailed approach with the methods/options (basically
how the basic units function, what the command-line options are, how different options affect the scan
and outputs, how to use these options and examples on their use cases) would greatly improve the
documentation experience from a user perspective. As of now, it's mostly a black-box to users as the
documentation is focused on some basic use cases and tasks. Therefore, the using/contributing curve is
sharper than what it ideally should be.

I propose to document these options and their corresponding effect in scan and outputs in detail, with

examples. With that, I will add “Discussions” on how the code scanning works, organize the
documentation in a structured manner, enforce standards through tests and continuous integration.
Additionally, I’ll add several important Tutorials/How-To’s to further improve the documentation
experience.

2

Goals to Achieve
1. scancode-toolkit command-line options:​ Create a complete guide of all the

command-line options of scancode-toolkit, how they affect the scan and outputs, with

user guidelines and explanations/examples. Add additional reference documentation for

code contributors.

2. Discussions explaining the code scanning:​ ​Add a complete discussion on how the code

scanning works, its various functions, and how it achieves smaller subtasks within the

scan.

3. ReadTheDocs Documentation:​ Re-organize existing Documentation into

aboutcode.readthedocs.io​ with proper tests and documentation standards (linting and

others) for all future documentation contributions. Besides working on scancode-toolkit,

extensively initiate and create/integrate basic documentation for other nexB open

source projects and their integration. Basically, create the framework for an improved

documentation experience.

4. Improving/Adding to the existing Tutorials/HowTo’s:​ ​Add more tutorials and how-to

guides to the existing documentation to make it more complete.

About Me
Name : Ayan Sinha Mahapatra

Website : https://​ayansinha.dev

Link to Resume : Resume Uploaded at my Website​ ​Google Drive

Timezone : Asia/Kolkata (UTC+05:30)

Email : ayansmahapatra@gmail.com

Course : Electronics and Tele-Communications Engg.

University : Jadavpur University, Kolkata

http://aboutcode.readthedocs.io/en/latest/
https://ayansinha.dev/assets/ayan-resume-gsod.pdf
http://ayansinha.dev/
https://ayansinha.dev/assets/ayan-resume-gsod.pdf
https://drive.google.com/drive/folders/1LK5zl85RoUyCJiV9rIq7MJ_49izKF58i?usp=sharing

3

Country : India

Obligations : None

Long-Running Project : No

Links : Github​ ​LinkedIn​ ​Twitter​ ​Blog​ ​Portfolio

Note:​ All my technical writing experience is documented in my resume, with appropriate links

to my blog, which holds all my works and links to works in other formats. Also, compiling the

blog by curating all my Technical Writings is a work in progress.

Introducing Myself
I'm Ayan Sinha Mahapatra, 3rd-year Undergrad at Jadavpur University, Kolkata. Contributing to

open source software has been a dream to me because of the impact it has and what it means

to us as a society. I'm highly motivated to pursue research and remain in academia after

graduating, specifically studying computational intelligence and how to achieve intelligent

behavior. As a Deep Learning/Neuroscience enthusiast, all of my work uses Open-Source

libraries ranging from Tensorflow, Scikit-Learn, Numpy for Machine Learning and Data Science

to MNE for EEG data processing.

I’m very comfortable with Python and have quite some experience in C/C++ as well. I have loved

working with Sphinx, which is being used for Documentation at AboutCode, along with being

experienced in similar technologies (like Jekyll, with which I’ve created my Blog).

I have also written code to develop meaningful projects myself and with friends in a

collaborative environment that are available in my GitHub account. Alongside, as an effort to

better equip my juniors in my university with trends in Machine Learning, I host sessions on

Image/Data Processing. I’m also a part of the university’s Code-Club (promotes Competitive

Coding and Open Source Contributions) and Kaggle Club (promotes Data Science and Machine

Learning), where I regularly host sessions and volunteer. I take an interest in explaining/blogging

about tech and have experience in the same.

I may not be an exceptional individual, but I’m highly motivated to take on challenges and learn

from them as I complete my objectives.

https://github.com/AyanSinhaMahapatra
https://www.linkedin.com/in/ayansinhaju/
https://twitter.com/ayansm23
https://ayansinha.dev/blog/archive.html
https://ayansinha.dev/ayan/

4

Why I’m applying for the Google Season of Docs
 The concept of people from all backgrounds coming together as a team from all parts of the

world to write impactful code, that anyone can use for their own cause, amazes me. Also, as I

use open-source software extensively in my projects/research work, I know by heart the value of

a project having good documentation support. It has significant effects on user productivity and

how widely that project is integrated throughout developer communities in their own workflow.

Inconsistencies/Gaps in documentation cause hours of frustration and lost time and wonderful

documentation does just the opposite.

Now Google Season of Docs gives me the opportunity to create this positive impact on my own,

as I work with an Organization like Aboutcode to improve their Documentation Experience. It’s

also an opportunity for me to challenge myself, and I’m very much looking forward to learning a

lot and gaining experience.

Why Aboutcode
I came across AboutCode while browsing the organization lists of GSoD. As AboutCode mainly

uses Python, my language of choice, it seemed like a good fit for me. I was curious and then I

set up the tools locally and experimented with Scancode-Toolkit with different codebases I use

and Scancode-Workbench for visualization. I also learned that AboutCode is going to use Sphinx

for their documentation and as I’ve considered sphinx before and tried it out quite some times, I

was excited about contributing further. I noticed that the present documentation was in the

GitHub wiki’s and the ReadTheDocs documentation was not updated. I asked Dennis whether I

could update that and after getting a positive reply completed the task. While working I was

exposed to all of the existing documentation and become aware of the shortcomings and what

more could be done. This is when I decided that I’ll apply at AboutCode and realized that I was

very excited about the work ahead. So here goes my detailed description of the work I propose

to complete for GSoD 2019.

5

Contributions to Aboutcode
● [#17] Adds Travis-CI for sphinx-build and linkcheck

This adds test scripts to check the build status of Sphinx Documentation along with

adding checks for broken links. It also fixes some broken links and updates

doc_maintenance.rst

● [#15] Adds Documentation from Wiki

To the main documentation, this adds Deltacode, Aboutcode Docs and remaining pages

of ScanCode Toolkit and ScanCode Workbench from the wiki.

● [#13] Adds GitHub wiki of Scancode-Toolkit and Scancode-Workbench

This adds almost all the Wiki Pages of Scancode-Toolkit (Except the How-To pages) and

Scancode-Workbench.

Project in Details

1. Scancode-Toolkit Command Line Options
Scancode-Toolkit has a host of Command Line options to customize how the scan is

performed, the output format and several other options like post-scan plugins. These

options currently don’t have proper documentation to explain them and are only

available through the “--help” or “-h” flag. This project aims to make a complete

documentation that explains:

1. All the Options available through Command Line

Goal:​ An exhaustive list of all possible options through the command line.

Basic Overview:

First, the ​default scan options​ are discussed, with an example of the output. A

short graphic/description on how the scan is performed.

https://github.com/nexB/aboutcode/pull/17
https://github.com/nexB/aboutcode/pull/15
https://github.com/nexB/aboutcode/pull/13

6

Hereafter, this default behavior acts as a reference to how the other options

change the scan and the output.

The Options are:

● scan options:

 [--license-diag] [--license-score INTEGER] [--license-text]

 [--license-url-template TEXT] [--max-email INT] [--max-url INT]

● output formats:

 [--json FILE] [--json-pp FILE] [--json-lines FILE] [--csv FILE] [--html FILE]

 [--custom-output FILE] [--custom-template FILE] [--spdx-rdf FILE]

 [--spdx-tv FILE] [--html-app FILE]

● output filters:

 [--ignore-author <pattern>] [--ignore-copyright-holder <pattern>]

 [--only-findings]

● output control:

 [--full-root] [--strip-root]

● pre-scan:

 [--ignore <pattern>] [--classify] [--facet <facet>=<pattern>]

7

● post-scan:

 [--is-license-text] [--license-clarity-score] [--license-policy FILE]

 [--mark-source] [--summary] [--summary-by-facet] [--summary-key-files]

 [--summary-with-details]

● core:

 [--timeout <secs>] [-n, --processes INT] [--quiet]

 [--verbose] [--from-json] [--timing] [--max-in-memory INTEGER]

● miscellaneous:

 [--reindex-licenses] [--keep-temp-files] [--test-mode]

● documentation:

 [-h, --help] [--about] [--version] [--examples] [--plugins]

 [--print-options]

These are to be discussed in detail and will contain the following information as

mentioned in the next sections.

8

2. Initiate Versioning Structure

Goal:​ Initiate a versioning system to properly maintain cross-release

options/API and documentation changes.

Problem:

Presently the documentation in the wiki and the ReadTheDocs pages are for

older releases and need major restructuring.

Basic Overview:

The parts of the scancode-toolkit that have been updated/could be updated in

version are

● Command Line Options

● APIs

● Documentation (To be initiated)

The command line options and the APIs are changed in versions and releases,

and the documentation also has to follow, or it will create massive confusion for

the users. The command line utility [--help] already is updated for any changes in

options and could be used to replicate the versioning in the documentation.

3. How these Options can be used in different cases

Goal:​ This section will provide a basic summary of how the scan results of

scancode-toolkit can be used in different causes and the Scancode-Toolkit

options that provide such functionality.

Basic Overview:

This section gives different use case scenario examples and what options are

recommended in those scenarios.

Note: This part requires significant help from the mentor in terms of inputs

about and pointers to various use cases of Scancode-Toolkit.

9

4. What these Options change in the Scan and the Output

Goal:​ This section will provide a basic summary of how the scan results of

scancode-toolkit can be used in different causes, and the Aboutcode tools that

provide such functionality.

Basic Overview:

The options change the behavior of how the scan is performed.

A basic default case will be illustrated in the leading section [1. All the Options

available through Command Line] and this section will compare the changes

that all the options bring to this default scenario.

5. Output Formats and their examples

Goal:​ This section will provide a basic summary of how the scan results of

scancode-toolkit can be used in different causes, and the Aboutcode tools that

provide such functionality.

Basic Overview:

Scancode-Tool has flags to specify different output formats in which the scan

results will be generated. These are -

● csv

● html

● html-app

● json

● json-pp

● jsonlines

● spdx-rdf

● spdx-tv

10

This part will

● explain in detail the output formats

● give examples on the output formats

● give other links corresponding to the output format and its use

how scan results are stored in the output files.

This also links to How these different formats are generated, which will be

explained in [2. Discussions explaining Code Scanning].

6. Business Use of Scancode Output Formats

Goals: Explain the Business Use cases of Scancode Output formats

In the GSoD ideas list, ​Scancode Output Formats​ is mentioned as a reference

idea. This section implements the same.

Note: This part requires significant help from the mentor in terms of inputs

about and pointers to various business use cases of Scancode-Toolkit.

7. How these outputs are used by other AboutCode projects for more analysis

Goal:​ This section will provide a basic summary of how the scan results of

scancode-toolkit can be used in different causes, and the Aboutcode tools that

provide such functionality.

Basic Overview:

● Scancode-Workbench

This part explains visualizing results with the desktop app and pointers to

scancode-workbench documentation for more support on the same. Will

add required documentation to scancode-workbench if necessary.

● Deltacode

How scancode results are taken by Deltacode to determine file-level

differences between two codebases.

https://aboutcode.readthedocs.io/en/latest/aboutcode-docs/gsod_2019.html#scancode-output-formats

11

2. Discussions explaining the Code Scanning
This is an “Explanation” type of Documentation for Aboutcode. It presents the whole

process of scanning code-repositories and generating results. This part of the Project

will also use flowcharts/diagrams to explain process flow diagrams and is meant to

make the project more understandable to the users as a whole.

Scancode-Toolkit performs the scan on a codebase in the following steps :

1. Collect an inventory of the code files and classify the code using file types,

2. Extract files from any archive using a general purpose extractor

3. Extract texts from binary files if needed

4. Use an extensible rules engine to detect open source license text and notices

5. Use a specialized parser to capture copyright statements

6. Identify packaged code and collect metadata from packages

7. Report the results in the formats of you choice (JSON, CSV, etc.) for integration

with other tools

There are components of the scancode-toolkit which are used in these steps to achieve

specific tasks. These are - [cluecode] [commoncode] [extractcode] [formattedcode]

[licensedcode] [packagedcode] [plugincode] [summarycode] [textcode] [typecode]

and the main [scancode].

This section proposes to explain the following:

● What are the smaller tasks performed in a typical scan

● What components of scancode-toolkit do those smaller tasks

● How these components complete the smaller tasks

● What external libraries are used for what purposes (optional)

● Link to changing behavior because of options

Additionally, links to code APIs explained in the developer documentation can also be

added to facilitate easier onboarding for developers.

12

3. Reorganize the structure of AboutCode Documentation
This part includes a host of changes to the Aboutcode Documentation

● Versioning system

 In [1. Scancode-Toolkit Command Line Options -> 2. Initiate Versioning

Structure] the issue of versioning the Command Line options are mentioned. The

same is necessary for other parts of the documentation also which contain

version specific commands/information that would otherwise create confusion.

● Setting Documentation Standards and Tests

The documentations already have tests for sphinx-build (builds all the pages and

checks for Sphinx syntax errors throughout) and link check (Checks all the links

to other webpages from the documentation) with Continuous Integration through

Travis-CI. (Added by me in this ​Pull Request #17 ​)

Now it needs more checks for specific linting in reStructured Text and other

standards. This could be achieved with ​restructuredtext-lint​ but needs more

research and will be done as a part of my GSoD project.

● Adding a “Getting Started” Section

This will act as a starting section for newcomers and will contain a compilation

of the most basic and important documents to get started with Aboutcode

Projects.

Every Aboutcode Project will have this section including Scancode-Toolkit,

Scancode-Workbench, Deltacode, and others.

● Restructuring According to the ​4 Document Functions

The existing Documentation isn’t explicitly structured in the 4 document

functions - Tutorials, How To’s, Reference and Explanations. I propose to

structure those accordingly, adding more information/explanations/pointers

whatever necessary. This holds for all the AboutCode projects and their

https://github.com/nexB/aboutcode/pull/17
https://github.com/twolfson/restructuredtext-lint
https://www.divio.com/blog/documentation/

13

documentation. Below are two examples of the Scancode-Toolkit

documentation restructuring I propose and would like to carry on in this

project. Similar changes will be carried out on the rest of the documentation.

● Restructuring the Development Page (Scancode-Toolkit)

More info on the Code/APIs could be added to make it more developer friendly.

There can be links to the [2. Discussions explaining the Code Scanning] section

above. This links the explanation of how the scan works to the code it uses to

perform the scan.

Like these folders contain different parts of scancode-toolkit, their individual use

can be elaborated with the APIs, in conjunction with the Discussion on how

scancode works.

● [cluecode : plugins for scanning licenses, copyrights, urls, emails]

● [commoncode : helper classes and functions]

● [extractcode : extracts different archive formats]

● [formattedcode : output formatting for different output file formats]

● [licensedcode : licence detection code]

● [packagedcode : parsing various package formats]

● [plugincode : classes for the plugins architecture]

● [summarycode : summarizes scan on detected licenses]

● [textcode : handles text parsing]

● [typecode : handles file type determinations]

● [scancode : CLI and API to scancode, the core part]

This subsection will contain detailed information/APIs on these parts of

scancode-toolkit in subsubsections accordingly.

The Development guidelines will be there on another page or another section

having smaller subsections.

14

● Restructuring the FAQ page (Scancode-Toolkit)

The ​FAQ​ page at present has questions that can be better answered and should

be structured as separate How To’s, Tutorials and Reference documents

separately.

● How does ScanCode work?

This issue is referenced in [2. Discussions explaining the Code Scanning]

and will be an entirely separate section in much more details.

● How to Add New License Rules for Enhanced Detection?

This issue is already discussed before in Improving the existing How-To’s,

documentation will be moved there.

● How to add a new license detection rule?

This could be made into another “How To” post separately and could be

elaborated on.

● How To get started with Development?

There’s already a separate ​development​ page and the information

overlaps quite a lot. The restructuring of the development page has

already been discussed above.

● Steps to cut a new release

This can be transformed into a seperate “How To Cut a new release”.

● Find more FAQ questions that answer generic questions about the project

and don’t fall in the “How To”/”Tutorial” categories.

https://aboutcode.readthedocs.io/en/latest/scancode-toolkit/faq.html
https://aboutcode.readthedocs.io/en/latest/scancode-toolkit/faq.html#how-does-scancode-work
https://aboutcode.readthedocs.io/en/latest/scancode-toolkit/how_to/how_to_add_new_license_rules_for_enhanced_detection.html
https://aboutcode.readthedocs.io/en/latest/scancode-toolkit/faq.html#how-to-add-a-new-license-detection-rule
https://aboutcode.readthedocs.io/en/latest/scancode-toolkit/faq.html#how-to-get-started-with-development
https://aboutcode.readthedocs.io/en/latest/scancode-toolkit/developement.html
https://aboutcode.readthedocs.io/en/latest/scancode-toolkit/developement.html#steps-to-cut-a-new-release

15

4. Improving/Adding to the existing Tutorials/HowTo’s
The main changes to the existing Documentation under this part of the project will be

● Improving the existing How-To’s

As an example, ​How to Add New License Rules for Enhanced Detection

references to an ​issue​, a related ​PR​ and another ​question​ on the FAQ

page.

All the information about adding new license rules could be bought under

one page, from all other sources and adding every possible support that a

user may need.

The page ​How To Run A Scan​ is actually another Tutorial opportunity and

should be improved to make it a newcomer’s ideal starting point.

● Adding new Tutorials:

There are opportunities like ​Scan a Codebase and Analyze the Results

mentioned in the GSoD ideas list which will be an important addition.

Having added how the scan works as an “Explanation” before this is

easier to add afterward and will be more complete together.

● Adding new How-To’s:

The present documentation structure there isn’t explicit “Tutorials” but

there are pages like ​How To Run A Scan​ as mentioned above which are

more tutorial opportunities and could be remodeled.

Additionally, there are other opportunities like ​How To Get the License

Clarity Score of a Package​ and ​How To Discover Licensing Issues in a

Software Project​ (and how to take advantage of license policy support)

mentioned in the GSoD ideas list which will be an important addition.

https://aboutcode.readthedocs.io/en/latest/scancode-toolkit/how_to/how_to_add_new_license_rules_for_enhanced_detection.html
https://github.com/nexB/scancode-toolkit/issues/257
https://github.com/nexB/scancode-toolkit/pull/258
https://aboutcode.readthedocs.io/en/latest/scancode-toolkit/faq.html#how-to-add-a-new-license-for-detection
https://aboutcode.readthedocs.io/en/latest/scancode-toolkit/how_to/how_to_run_a_scan.html
https://aboutcode.readthedocs.io/en/latest/aboutcode-docs/gsod_2019.html#scan-a-codebase-and-analyze-the-results
https://aboutcode.readthedocs.io/en/latest/scancode-toolkit/how_to/how_to_run_a_scan.html
https://aboutcode.readthedocs.io/en/latest/aboutcode-docs/gsod_2019.html#how-to-get-the-license-clarity-score-of-a-package
https://aboutcode.readthedocs.io/en/latest/aboutcode-docs/gsod_2019.html#how-to-get-the-license-clarity-score-of-a-package
https://aboutcode.readthedocs.io/en/latest/aboutcode-docs/gsod_2019.html#how-to-discover-licensing-issues-in-a-software-project
https://aboutcode.readthedocs.io/en/latest/aboutcode-docs/gsod_2019.html#how-to-discover-licensing-issues-in-a-software-project

16

Project Timeline

Before the Community Bonding Period

● Setting Up the doc development environment and the aboutcode tools locally and

experiment more with all the command line options and outputs

● Getting familiarized with the codebase and how the scan is performed

● Reorganize the Documentation in wiki’s of specific Aboutcode Projects to host them at

aboutcode.readthedocs.io

● Add Sphinx Build and Link Check Tests for CI

● Discuss and draft the project proposal with my Mentor

Community Bonding Period [August 1 - September 1, 2019]

● Fix version problems in the documentation and initiate the structure.

● Finalize the Project in a more detailed manner, make mockups of what has to be done

● Finalize the documentation structure, write more tests and linting guidelines.

● Create an Execution Plan in detail.

● Discuss my project in details with the community and integrate their feedback.

Documentation Development Begins [September 2, 2019 - November 22, 2019]

Documentation Development (September 2 - November 22)

September 2nd - September 9th Work on advanced Tests for Sphinx linting
and setting documentation standards

September 10th - September 14th Structuring the Command Line Options
Reference and document the default case

September 15th - September 19th Document Command Line Options and
examples

17

September 20th - September 25th Documenting how the different options
change the Scan/Output

September 26th - October 1st Document Different Output Formats with
Examples and How these Outputs are used

for visualization and analysis

October 2nd - October 5th Work on “Discussion” part of
Scancode-Toolkit (Sections 1-5)*

October 6th - October 13th Remaining parts of the Discussion
(Sections 6-7)*

October 14th - October 21st Explain Various APIs inside scancode and
support for different Plugins

October 22nd - October 25th Integrating all this Documentation Together
and Initiate Versioning

October 26th - November 6th Additional Tutorial Documentation

 November 7th - November 18th Additional How To’s Documentation

 November 18th - November 24th Buffer Period**

 Final Week: November 25 - 29 Working on submitting the final work
product, report and mentor evaluations.

Final Submission

* Here Sections 1-5 and 6-7 refer to the steps of the Scan mentioned in [2. Discussions

explaining the Code Scanning]

** This Buffer Period is reserved for unplanned events or any other part taking more time

Commitments
During the project timeline, i.e. 2nd September - 29 November, I have no other prior

commitments and can work for a full 42 hours per week in a regular work pattern. Will be

available in all the communication channels throughout, even in the days after proposal

submission and prior to officially beginning doc development.

18

As I’m in my last year of college, we have very little college-related work this semester (less

than 10 hours per week), as placements/interviews are to be held in this period (which I will not

be participating in). After college I’d be working for the same research lab I’m presently interning

at, so I’d be completely free from those and all other commitments in this period. Thus I can

fully focus on Google Season of Docs and quality documentation development for AboutCode.

Expectations from Mentors
During/in the time prior to Doc Development, my expectations from the mentors will be as

follows:

● Helping me Understand the Codebase when required if I’m unable to understand on my

own. (I’m already familiar with major structures and even some specific nitty-gritty

details)

● Provide me with necessary pointers/links if I need to pick up extra concepts regarding

my work when required if I’m unable to find the same on my own.

● To formulate more broadly the area of work in accordance with the existing plans of the

organization, and have discussions whenever important decisions are taken (like say

setting standards for the documentation).

● To be straightforward about the direction/quality of work and give feedback for path

correction whenever necessary, throughout the work period.

● Take time to review my work and integrate it into the existing documentation.

Long Term Goals after GSoD
GSoD is only a stepping stone for me into Open Source Contributions. My GSoD project will

improve the documentation experience and general structure of scancode-toolkit, but after that,

there’ll be plenty of scopes to improve the documentation. There’s also scope for onboarding

others to contribute to the documentation, guiding them through the structure and tests

wherever necessary. I can also start contributing code to engage myself more in the

open-source community, to Aboutcode or even to more organizations. I’ll continue my blogging

and other community endeavors at my university to mentor younger minds into open source.

